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The present paper proves the possibility of controlling the rotational motion 
of a rigid body when the information on the current phase state of the system 
is incomplete and the only measurable parameter at each instant of timeis the 
projection of the angular velocity vector on the axis of responseof asinglespin 

rate sensor rigidly attached to the object. Two control problems are considered: 
(1) imparting to the rigid body the mode of steady rotation with respect to the 
axis possessing the largest moment of inertia, the mode used in the system of 
passive stabilization [l--3], and (2) deceleration of a rotating rigid body. Con- 
ditions of stability of the above two modes of motion are analyzed. 

1, Formulation of the problem. Introducing the syz -coordinate system 
attached to the body, we assume that the response axis of the spin rate sensor coincides 

with the direction i , the orientation of which with respect to the ZZJZ basis is defined 
by the direction cosines a, p, y and is assumed known. 

Neglecting the dynamic properties of the sensor, we have the following signal at its 

where p is the unit vector of the I.-direction and o is the angular velocity vectorof the 
object. We agree to describe the body rotational motion in terms of the dynamic Euler 
equations (symbols within the brackets indicate that the remaining two equations are 

obtained by cyclic permutation of the indices) 

1, WX’ i- (1, - II/) 01/o, = M, (.t!/Z) (1. ‘) 

in which I,, I,,, I, are the moments of inertia (we shall assume, for definiteness, that 

1, ( 1, < 1,) and M,, Al,, M, are the control moments). 
Problem 1. Using the information available in the form of (1. l), to formulate the 

control n/J = {n/l,, M,, M,} , ensuring the asymptotic stability of the steady rotation 
of the object about the axis possessing the largest moment of inertia 

(I), == ~0~ -_ 0, (0; = 9 =z const (1.3) 

Problem 2. Using the information (1. l), to synthesize a control moment A! en- 
suring the stability of the unperturbed motion 

0 x = WY -= (OZ = 0 (1.4) 

2. On controlling the motion when the information on the 
phase state of the system is incomplete. Consider the controlsystem 

5’ = f (z, U) z AZ + F (x) + Bu (‘2.1) 
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y = cx, f (0, 0) = 0 

XE R,, u E CT c R,, Y E Rs 
Here A, B, c are constant matrices and F (x) is a vector function the expansion of 
which in the powers of Xi (i = 1, 2,. . ., n) begins with terms of at least secondde- 

gree. With the information about the motion of the object available in the form y =CX, 

it is required to choose a control u*in the way which would ensure the asymptotic sta- 
bility of the unperturbed motion x = 0. 

We shall assume that for the first approximation system 

x’ = Ax + Bu, y = Cx (2.2) 

the pair (A, B) is controlled, and the pair (A, C) is an observed one. This implies 
that the nonlinear system (2.1) can be observed near the unperturbed motion [4] and be 

stabilized with the following linear control [53: 

u = Kx (2.3) 
The control in the form (2.3) can be realized directly from the results of the measure- 

ments of the observable parameters only in the case when a matrix G exists such that 

K = GC (2.4) 

If such a matrix does not exist, we can solve the problem using a system of estimate 
of the state which will enable us to estimate all the components of the vector X from 
the incomplete information available about the state of the system, and will make it pos- 

sible to formulate the control not with respect to the vector X, but with respect to itses- 
timated value 2 in accordance with the expression 

u = Kz (2.5) 
Assuming that the rank of the observability matrix 

JV = IIC’ A’C’. . . (A’)“-l C’II 

is n, we introduce the system of estimating the state in the form 

z’ = AZ + I (y - Cz) + F (z) + Bu (2.6) 

From (2.1) and (2.6) it follows that the vector of the error e = x - z satisfies the equa- 
tion 

e’ = (A - IC) e + Y (x, e), Y (x, e) = F (z) - F (z) (2.7) 

We note that when the initial conditions of the filter coincide with those of the object, 

the system (2.6) ensures that the exact recovery of the state vector X. 
Next we shall find what requirements must the matrices K and I satisfy in order that 

the position of equilibrium z=O be asymptotically stable. 
Let us consider the object equation, the system of estimating its state, and the control 

law 
x’ = Ax + F (x) + Bu, y = Cx (2.8) 

z’ = AZ + 1 (y - Cz) + F (z) + Bu, u = Kz 

Passing in the system (2.8) from the variables X, z to the variables x, e , we write it 
in the form 2’ 

II II II 

A -t- K 
= 

0 
P.9) 

e’ 
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Analyzing (2.9),we find that the problem of stability of the trivial solution z = e -= 0 
is reduced to that of the study of the stability of the matrices A + K and A - LC. 
If the eigennumbers of these matrices have negative real parts, the unperturbed motion 

x = e = 0 of the system (2.9) is not only stable, but also asymptotically stable [6]. 

Since in this case the vector of the error c -+ 0 as t -+ DC, the system (2.6) used to 
estimate the state becomes asymptotic. 

3, Inftfal condition of the system 424 of estimatfng the state, 
At the initial instant of time nothing is known on the state of the system (2.6), therefore 
the usual assumption made is that s (to) = 0 [7]. However, a transitional process with- 

in the system of estimating the state may lead the controlled motion of the object to an 

unacceptable quality. To avoid this, we shall proceed as follows. 
Let the object be undergoing an uncontrolled motion at t ( to . To estimatethevec- 

tor 2 of its phase state we introduce the system of equations 

z’ = AZ + I (y - Cz), y = Cx, t E [tl, t,,], z (tl) = 0 (3.1) 

The error vector e = x - z is governed in the present case by the equation 

e* = (A - ZC) e + F C-4, e (tl> = 2 (tJ (3.2) 

The system (3.1) of estimation of the state is not asymptotic; however, if the matrix 
A - ZC is stable, the system allows the determination of the vector 2 with a definite 

accuracy depending on the manner in which the vector function F (x) varies. The va- 

lue of the vector z obtained by the instant t = to from the solution of (3. l), is used 
as the initial condition of the system (2.6) of estimating the state. 

4. Importing a steady rotation to the body, We introduce thenota- 
tion 

a, = (I, - I,) Ix-l, z&r = &!,I,-~ *(I, 2, 3, q/z) (4.1) 

%Z = cc,, q4 = 22, 0, = x2 + !A 

and write Eq. (1.2) in the form 

(4.2) 

We shall assume that the scalar 
y = Cx, C = lla~yll (4.3) 

represents the output of the system (4.2). 
Use of the above notation reduces the solution of Problem 1 to that of ensuring the 

asymptotic stability of the unperturbed motion x = 0. 

It is not possible to realize the control in the form (2.3) by observing the scalar y. 
We therefore assume that the following condition of observability of the system (4.2), 

(4.3) holds : 
det W # 0, W = IIC’ A’C’ (A’)Vll (4.4) 
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This condition can be reduced to the requirement 

Qla&sy (a# - a#) + 0 (4.5) 

and we shall control the rotational motion of the rigid body using the algorithm (2.5) 

and determining the vector z from the equation 

z’ = AZ + 1 (y - Cz) + F (i) + u (4.6) 

We note that the vector functions F (z) and Y! (x, e) have, in the present case, the 
following form : 

al 2~ 28 GI (e2z3 + e822 - e2e8) ’ 

F (2) = a2 21 23 , 

I 1 

‘p (5, e) = 

1 

a2 (el% + e8”1 _^ elp3) 

aa 21 22 “s (v2 + 3% - w2) 

Selection of the elements of the matrix K (we assume for simplicity that K = diag (jE1, 
k,, k,}) such that the natrix A + K is stable,presents no difficulties. 

To ensure that the matrix d - Ic has eigennumbers specified beforehand, the vec- 
tor .! in the filter equation (4.6) must be chosen from the equalities 

1 = T-‘L, T = lItI t2tsll’ 

t1 = (A ‘)V -+ a,A ‘C’ + a&’ 

t2 = A’C’ + a,C’, t3 = C 

We denote by ai the coefficients of the characteristic polynomial of the matrix A 

It is important to note that det, T = - det IV, i. e. the vector E can be compu- 

ted only when the system (4.2) is observable. Let 0 (s) = ss $- &s” i- &S -i- 8s 
be an arbitrary normed polynomial the roots of which all have the negative real parts. 

If we now construct a vector L with components 

L4-i = pi - CCi (i = 1, 2, 3, 

the roots of the characteristic polynomial of the matrix A - ZC will coincide with 

the roots of the polynomial 0 (s) [7]. 
Let A + K and A - IC be stable matrices, Then the control 

N z = l&l (1 2 3, zyz) (4.7) 

in whiCh 21 (i = 1, 2, 3) are found from the solution of (4.61, ensures the asymptotic 
stability of the steady rotation of the object about the axis possessing the largest moment 

of inertia. 

5. Decelerating of a rotating rigid body. The results obtained in the 
course of solving Problem 1 can be extended to the case of deceleration of a rotatingri- 

gid body. 
In fact, by specifying the accuracy of controlling the deceleration of the body we de- 

fine the admissible residual angular velocity (I)~ = 52,. Then the control in the form 
(4.6). (4. ‘7) which is formulated under the assumption that Q = 52, guarantees the 
stability of the unperturbed motion (1.4) when the body is set by the control into the 
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the mode of steady rotation about the z-axis, In solving Problem 2, the body is set into 
the mode of steady rotation, it is not important about which axis the steady rotation is 

performed. 
1 

Fig. I 

Fig. 2 

6. EX a m p 1 e. We consider the process of setting a rigid body with the following va- 

lues of the inertia ellipsoid [8]: 

I, = 1.25. 10akg.ma, I, = 6.9-106 kg+rna, 1~ = 7.1.106kgsm2 

from its initial state w, (0) = 0.25 deg/sec, c,+, (0) = -0.25 deg/sec, tit (0) = 0 into 
the mode of steady rotation w5 = 0~ = 0, oz = 1 deg/sec. As the ;1-directionalong 
which the axis of response of the spin rate sensor is oriented, we take the direction which 
forms equal angles (a = 6 = y = 1 / f37 with the z , y , z axes. 

Figure 1 depicts the character of the variation in the angular velocities o,, my, 0, 
deg/sec (curves 1, 2 and 3, respectively). During the time interval 10, &+I the bodyper- 
forms an uncontrolled motion. The controlling moments (4.7) in which 4 = kz = k, = 

---I /set are formed beginning from the instant t = t*. The eigennumbers of the mat- 

rix A - 1~ in the systems of estimating the state (3. l), (4.6) are assumed to be equal 
to p1 = Pz = P’s - -0.1 /sec. The latter values have the corresponding vector I with 

components l1 = -3.62 /sec. I, = -37.8 /sec. and Is = 41.91 /sec. Figure 2 de- 
picts the variation in the controlling moments M,, Mv, Mz n t m d-icing the motion 
(curves 1, 2 and 3, respectively). 
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